192 research outputs found

    Spectral and time-frequency domains features for quantitative lower-limb rehabilitation monitoring via wearable inertial sensors

    Get PDF
    Inertial data represent a rich source of clinically relevant information which can provide details on motor assessment in subjects involved in a rehabilitation process. Thus, a number of metrics in the spectral and time-frequency domain has been considered to be reliable for measuring and quantifying patient progress and has been applied on the 3D accelerometer and angular rate signals collected on one impaired subject with knee injury through a wearable wireless inertial sensing system developed at the Tyndall National Institute. The subject has performed different activities evaluated across several sessions over time. Data show that most of the studied features can provide a quantitative analysis of the improvement of the subject along rehabilitation, and differentiate between impaired and unimpaired limb motor performance. The work proves that the studied features can be taken into account by clinicians and sport scientists to study the overall patients' condition and provide accurate clinical feedback as to their rehabilitative progress. The work is ongoing and additional clinical trials are currently being planned with an enhanced number of injured subjects to provide a more robust statistical analysis of the data in the study

    A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry

    Get PDF
    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future

    Antenna development for wearable wireless sensing systems

    Get PDF
    Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band

    Vibration characterisation for fault detection and isolation in linear synchronous motor based conveyor systems

    Get PDF
    Linear synchronous motor (LSM) based transport systems are increasingly deployed in automated manufacturing environments. The aim of the study is to establish the feasibility of employing low power and low-cost vibration sensing cyber physical systems to perform near real-time fault detection and isolation for passive LSM vehicles. Empirical data capture was conducted on an LSM test-bed where vehicle velocity was varied to determine how changes in velocity would impact the vibration profile of the LSM vehicle. The recorded data was analyzed, and peak accelerations were examined for each of the velocities under study. Frequency domain analysis was conducted on the collated accelerometer data and frequencies of interest were identified. The findings are shown to concur with the manufacturer's operating specifications (0-30 Hz). A relationship between LSM vehicle speed and vibration frequency was established. The results presented provide the basis for the establishment of low-cost condition based preventative maintenance, deployed to a LSM based transport system for high volume manufacturing

    A review of physical activity monitoring and activity trackers for older adults

    Get PDF
    The objective assessment of physical activity levels through wearable inertial-based motion detectors for an automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in literature. However, their application to older adults can present particular constraints. This paper reviews the methods of measuring physical activity, adoption of wearable devices in older adults, describes and compares existing commercial products encompassing activity trackers tailored for older participants

    On the use of Wireless Sensor Networks in Preventative Maintenance for Industry 4.0

    Get PDF
    The goal of this paper is to present a literature study on the use of Wireless Sensor Networks (WSNs) in Preventative Maintenance applications for Industry 4.0. Requirements for industrial applications are discussed along with a comparative of the characteristics of the existing and emerging WSN technology enablers. The design considerations inherent to WSNs becoming a tool to drive maintenance efficiencies are discussed in the context of implementations in the research literature and commercial solutions available on the market

    THAWS: automated wireless sensor network development and deployment

    Get PDF
    This research focuses on the design and implementation of a tool to speed-up the development and deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks. THAWS presents the user with a choice of options, in order to characterise the desired functionality of the network. With this information, THAWS generates the necessary code from pre-written templates and well-tested, optimized software modules. This is then automatically compiled to form binary files for each node in the network. Wireless programming of the network completes the task of targeting the wireless network towards a specific sensing application. THAWS is an adaptable tool that works with both homogeneous and heterogeneous networks built from wireless sensor nodes that have been developed in the Tyndall National Institute

    Multiradio sensing systems for home area networking and building management

    Get PDF
    Many WSN systems use proprietary systems so interoperability between different devices and systems can be at best difficult with various protocols (standards based and non-standards based) used (ZigBee, EnOcean, MODBUS, KNEX, DALI, Powerline, etc.). This work describes the development of a novel low power consumption multiradio system incorporating 32-bit ARM-Cortex microcontroller and multiple radio interfaces - ZigBee/6LoWPAN/Bluetooth LE (Low Energy)/868MHz platform. The multiradio sensing system lends itself to interoperability and standardization between the different technologies which typically make up a heterogeneous network of sensors for both standards based and non-standards based systems. The configurability of the system enables energy savings, and increases the range between single points enabling the implementation of adaptive networking architectures of different configurations. The system described provides a future-proof wireless platform for Home Automation Networks with regards to the network heterogeneity in terms of hardware and protocols defined as being critical for use in the built environment. This system is the first to provide the capability to communicate in the 2.4GHz band as well as the 868MHz band as well as the feature of multiboot capability

    Multiradio, multiboot capable sensing systems for home area networking

    Get PDF
    The development of Wireless Sensor Networking technology to deploy in smart home environments for a variety of applications such as Home Area Networking has been the focus of commercial and academic interest for the last decade. Developers of such systems have not adopted a common standard for communications in such schemes. Many Wireless Sensor Network systems use proprietary systems so interoperability between different devices and systems can be at best difficult with various protocols (standards based and non-standards based) used (ZigBee, EnOcean, MODBUS, KNX, DALI, Powerline, etc.). This work describes the development of a novel low power consumption multiradio system incorporating 32-bit ARM-Cortex microcontroller and multiple radio interfaces - ZigBee/6LoWPAN/Bluetooth LE/868MHz platform. The multiradio sensing system lends itself to interoperability and standardization between the different technologies, which typically make up a heterogeneous network of sensors for both standards based and non-standards based systems. The configurability of the system enables energy savings, and increases the range between single points enabling the implementation of adaptive networking architectures of different configurations. The system described provides a future-proof wireless platform for Home Automation Networks with regards to the network heterogeneity in terms of hardware and protocols defined as being critical for use in the built environment. This system is the first to provide the capability to communicate in the 2.4GHz band as well as the 868MHz band as well as the feature of multiboot capability. A description of the system operation and potential for power savings through the use of such a system is provided. Using such a multiradio, multiboot capable, system can not only allow interoperability across multiple radio platforms in a Home Area Network, but can also increase battery lifetime by 20 – 25% in standard sensing applications

    Precision biomechanical motion tracking and throw characterisation in professional darts

    Get PDF
    In professional sports there are in general three steps required to improve performance namely task definition, training and performance assessment. This process is iteratively repeated and feedback generated from quantitative performance measurement is in turn used for task redefinition. Task definition can be achieved in a number of ways including via video streaming or indeed and as is more common, by listening to coaching staff. However non-subjective performance evaluation is difficult due to the complexity of the movements involved. When considering the subset of sports where precision accuracy and repeatability are a necessity this problem becomes inherently more difficult to solve. Until recently sports such as martial arts, fencing and darts, where the smallest deviation from a prescribed movement goal can result in large outcome error, were deemed too difficult to characterise fully. Advances in technology, as illustrated by this study, now make this type of physiometry possible
    • …
    corecore